KNOM 2011 Tutorials

Sensor networks for real-time services

Han, Junghee

Future networks

Cyber-World interacts with Real-World in Everyplace

Goals of this talk

- Give an understanding what <u>embedded</u>, <u>ad</u> <u>hoc</u>, <u>sensor</u> networks are good for, what their intended application areas are
- Discuss about main challenges in wireless sensor network applications
 - real-time constraints
- Propose possible approaches
 Beacon scheduling algorithm
 Sensor planning scheme

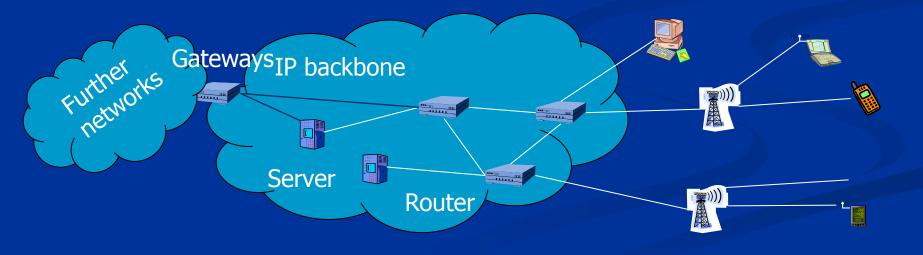
What are embedded systems?

Computing system embedded in a larger system Provide computing for a system with special purpose (cf. general purpose computing) Computing itself is hidden from the user • computing is not the ultimate goal computing serves for real mission (ECU of cars) Usually perform static tasks - predetermined Usually small to be embedded Battery operated sometimes Usually have "real-time" constraints

Possible applications for embedded systems

Let's take a look at "examples"

- Cell phones, PDAs
- Digital cameras
- Microwave ovens
- Factory process control
- Radar systems
- Avionics



Infrastructure-based wireless networks

- **Typical wireless network: Based on infrastructure**
 - E.g., GSM, UMTS, ...
 - Base stations connected to a wired backbone network
 - Mobile entities communicate wirelessly to these base stations
 - Traffic between different mobile entities is relayed by base stations and wired backbone
 - Mobility is supported by switching from one base station to another
 - Backbone infrastructure required for administrative tasks

Possible applications for infrastructurefree networks

- Military networking: Tanks, soldiers, …
- Finding out empty parking lots in a city, without asking a server
- Search-and-rescue in an avalanche
- Personal area networking (watch, glasses, PDA, medical appliance, …)

• •••

Solution: (Wireless) ad hoc networks

- Try to construct a network without infrastructure, using networking abilities of the participants
 - This is an *ad hoc network* a network constructed "for a special purpose"
- Simplest example:

Laptops in a conference room – a *single-hop ad hoc network*

Wireless sensor networks

 Participants in the previous examples were devices close to a human user, interacting with humans

Alternative concept:

Instead of focusing interaction on humans, focus on interacting with *environment*

- Network is *embedded* in environment
- Nodes in the network are equipped with *sensing* and *actuation* to measure/influence environment
- Nodes process information and communicate it wirelessly

WSN application examples

- Disaster relief operations
 - Drop sensor nodes from an aircraft over a wildfire
 - Each node measures temperature
 - Derive a "temperature map"
- Biodiversity mapping
 - Use sensor nodes to observe wildlife
- Intelligent buildings (or bridges)
 - Reduce energy wastage by proper humidity, ventilation, air conditioning (HVAC) control
 - Needs measurements about room occupancy, temperature, air flow, ...
 - Monitor mechanical stress after earthquakes

Goals of this talk

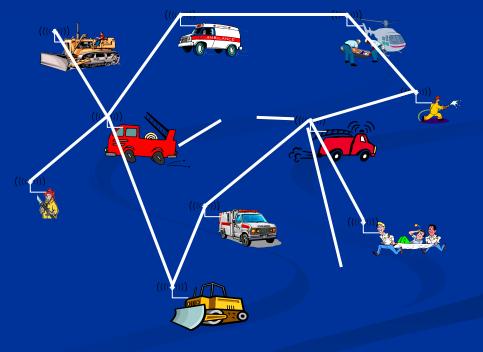
- Give an understanding what <u>embedded</u>, <u>ad</u> <u>hoc</u>, <u>sensor</u> networks are good for, what their intended application areas are
- Discuss main challenges in wireless sensor network applications
 - real-time constraints
- Propose possible approaches
 Beacon scheduling algorithm
 Sensor planning scheme

Problems/challenges for embedded wireless sensor networks

- Without a central infrastructure, things become much more difficult
- Problems are due to
 - Lack of central entity for organization available
 - Limited range of wireless communication
 - Mobility of participants
 - Battery-operated entities
 - "Quality of service"

No central entity → self-organization

- Without a central entity (like a base station), participants must organize themselves into a network (*self-organization*)
- Pertains to (among others):
 - Medium access control no base station can assign transmission resources, must be decided in a distributed fashion
 - Finding a route from one participant to another


Limited range → multi-hopping

- For many scenarios, communication with peers outside immediate communication range is required
 - Direct communication limited because of distance, obstacles, ...
 - Solution: *multi-hop network*

Mobility → Suitable, adaptive protocols

- In many (not all!) ad hoc network applications, participants move around
 - In cellular network: simply hand over to another base station
- In mobile ad hoc networks (MANET):
 - Mobility changes neighborhood relationship
 - Must be compensated for
 - E.g., routes in the network have to be changed
- Complicated by scale
 - Large number of such nodes difficult to support

Battery-operated devices → energy-efficient operation

- Often (not always!), participants in an ad hoc network draw energy from batteries
- Desirable: long run time for
 - Individual devices
 - Network as a whole
- ! Energy-efficient networking protocols
 - E.g., use multi-hop routes with low energy consumption (energy/bit)
 - E.g., take available battery capacity of devices into account
 - How to resolve conflicts between different optimizations?

Quality of service → real-time supporting operation

- Traditional QoS metrics do not apply
- Still, service of WSN must be "good"
 - Right answers at the right time

! Sensor network protocols with time-constraints supported

- E.g., Consider time constraints of applications when scheduling and planning of systems
- E.g., Try to reduce communication delay
- How to resolve conflicts between different optimizations?

What are real-time systems?

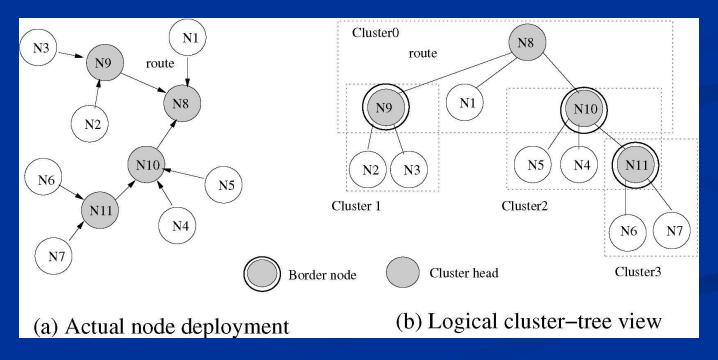
Computing system whose specification includes both logical and temporal correctness requirements

- Logical Correctness: produces correct outputs
- *Temporal Correctness*: produces outputs at the right time

Real-Time Embedded Systems

	Real-time Embedded sensor networks	General Purpose Computing
User's perspective	Special purpose < computing Non-	General purpose Programmable
	programmable (Static Tasks)	(Dynamic Tasks)
Environmenta I perspective		Less Interaction with physical world
	Real-time < requirements	As fast as possible
Designer's perspective	Restricted < resource – small size, battery, CPU,	Plenty of resource
	memory Close to HW− low level programming	Far from HW- high level programming

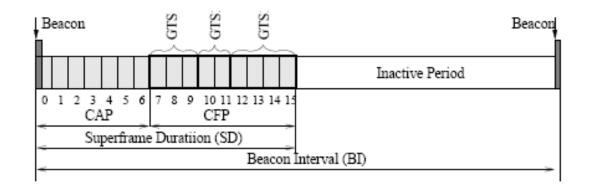
Goals of this talk


- Give an understanding what <u>embedded</u>, <u>ad</u> <u>hoc</u>, <u>sensor</u> networks are good for, what their intended application areas are
- Discuss main challenges in wireless sensor network applications
 - <u>real-time constraints</u>
- Propose possible solutions
 Beacon scheduling algorithm
 Sensor planning scheme

Assumptions

- Tasks are static and periodic
- Tasks have time constraints
- Sensors are power-limited
- Target platform: cluster-tree ZigBee networks

Cluster-tree ZigBee networks

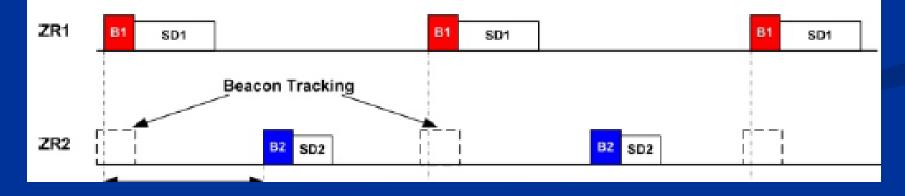

- A ZigBee cluster-tree network is a cost effective choice for sensing and control applications in home and factory environments.
- Consists of multiple clusters
 - Each cluster has a pan coordinator (cluster head), router (border nodes), and ordinary nodes.

Beacon-enabled ZigBee networks

For power efficiency...

- Head node broadcasts beacon frames at every *beacon interval* (BI).
- Nodes in a cluster become active only for a portion of each beacon interval, called a *superframe duration* (SD)

Challenges

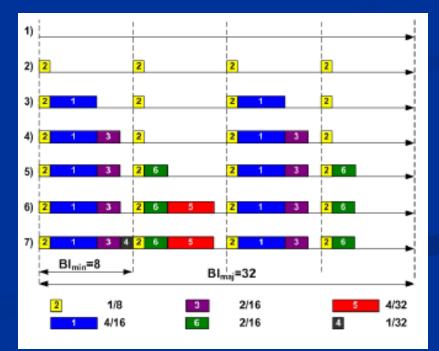

- BUT.....Two nodes in different clusters may interfere with each other.
 - To avoid this, *BI*s and *SD*s of multiple clusters need to be carefully configured and scheduled.
 - \rightarrow BI(SD) scheduling algorithm
- Tasks may have time constraints
 - To support this, BI value should be carefully determined
 - \rightarrow BI/SD parameter optimization algorithm
 - To consider this, sensor nodes should be carefully deployed
 - \rightarrow Sensor node deployment algorithm

Challenge 1: Beacon Scheduling Algorithms

Goal

- Beacon frames of the different coordinators SHOUD avoid collisions with <u>any other</u> beacon and data frames
- **Solution**
 - Organize beacon frame transmissions in a serial way
- Ref

 A. Koubaa, M. Alves, and M. Attia, "Collision-Free Beacon Scheduling Mechanisms for IEEE 802.15.4/Zigbee Cluster-Tree Wireless Sensor Networks," 7th International Workshop on Applications and Services in Wireless Networks (ASWN), 2007.

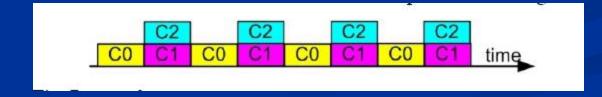

Challenge 1 Beacon Scheduling Algorithms

Examples

Coordin ator	SD	BI
C1	4	16
C2	1	8
C3	2	16
C4	1	32
C5	4	32
C6	2	16

<Table: PAN configuration>

<Scheduled BI and SD>

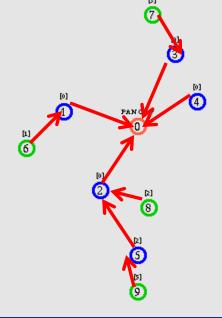

Challenge 1: Grouped Beacon Scheduling

Extension

- Original algorithm + beacon overlapping
- \rightarrow Increase utilization and feasibility

Issues

- Which cluster can be grouped with which?
- How to assign BI and SD for each grouped clusters
- \rightarrow We have worked on this issue



Challenge 1: Grouped Beacon Scheduling

- NS2 Simulation results
 1 PAN coordinator
 5 router (cluster heads)
 4 leaf nodes
 - Using NOAH protocol

	BO	SO
PAN	4	2
ZR1	5	2
ZR2	4	1
ZR3	4	1
ZR4	5	0
ZR5	4	1

	Non schedule	Serial SDS	Group SDS
Packet drop rate	16.5%	1.1%	1.2%
Utilization	N/A	71.8%	59%

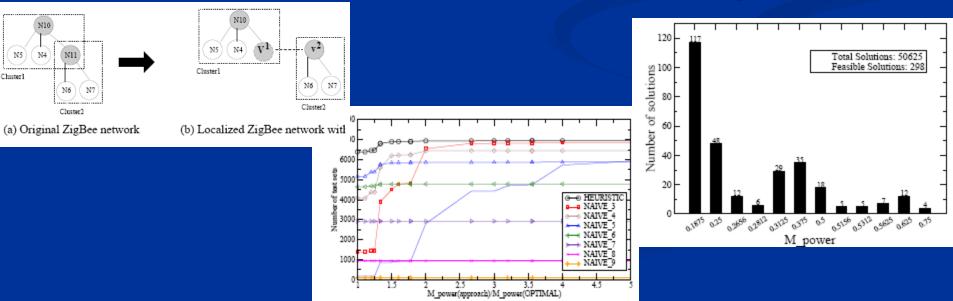
Challenge 2-1: GTS-based BI assignment

Goal

- guarantee end-to-end deadlines of real-time flows
- maximize the lifetime of the entire system

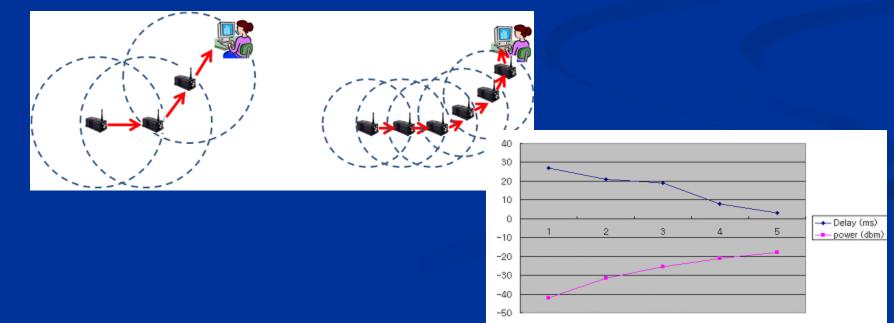
Proposed solution

- *a heuristic algorithm*
- to optimally configure ZigBee parameters with low complexity by decomposing the global optimization problem into a set of cluster-based local problems.


Ref

 Junghee Han, Suhan Choi, and Taejoon Park "Maximizing Lifetime of Cluster-Tree ZigBee Networks Under End-to-End Deadline Constraints", IEEE Communication Letters, vol14, No3, 2010

Challenge 2-1: GTS-based BI assignment


Algorithm

- split a inter-cluster border node belonging to multiple clusters into a set of intra-cluster virtual nodes
- 2. split end-to-end deadline into a set of cluster-based onehop deadlines
- 3. estimate a per-cluster worst-case one-hop delay
- 4. select BI and SD for each cluster based on the above steps

Challenge 2-2: Sensor node deployment

- How to deploy sensor nodes?
- **Goals**
 - consider sensor transmission and sensing range
 - guarantee end-to-end deadlines of real-time flows
 - \rightarrow Conflicting objectives !!!

Conclusion

They are just preliminary steps for building scientific foundation of future networks design

We still have an awful lot of work to do !!!